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Abstract In this short note we address the paper (Vogt in J Math Chem 51:2257–2263,
2013) where Vogt claimed to have found errors and inconsistencies in Dell’Acqua and
Bersani (J Math Chem 50:1136–1148, 2012). After a critical review, we show also
numerical evidence of the inconsistency of the main point of Vogt (J Math Chem
51:2257–2263, 2013).
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1 Introduction

Enzyme kinetics deals with the dynamics of enzymes and substrates in a variety of
scenarios, whose common features are the different time scales involved in the two-
step mechanism of the substrate catalysis. This is why this subject is often used in
textbooks (see, for example, [6]) as a nice application of singular perturbation theory,
whereas it allows to catch the relevant time scales and to perform a detailed study of
each step.

In [4] the authors studied the well known standard Quasi-Steady State Approx-
imation (sQSSA), or Michaelis–Menten–Briggs–Haldane approximation [3,7], in a
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“total” framework, that is to say, “total” variables (as introduced in [2]) were used to
nondimensionalize the resulting “total” differential equations and to find the appro-
priate scaling quantities (including time scales). The resulting first order expansion
turned out to be very accurate, even compared with the expansions obtained by other
authors [1,2,5,8]. Anyway, in [9] Vogt found a simplification of our argument and
claimed to have found an inconsistency in our results.

The subject of this short note is to show that the main inconsistency is in the fact
that the simplification made by Vogt is just a particular case of our argument and, in
general, does not give reliable results as it lies in an oversimplification of the differential
equations, that changes the premises upon which the perturbative equations are built.

The paper is organized as follows. In Sect. 2 we recall briefly the model equations
and the results obtained in [4]. In Sect. 3 we summarize the results obtained in [9] by
Vogt and discuss the weakness of his argument, showing numerical simulations that
support our analysis. Finally, in Sect. 4 we state our conclusions.

2 Model equations and “total” results

Let us consider the classical Michaelis–Menten kinetics scheme:

E + S
k1
�
k−1

C
k2−→ E + P, (1)

where E, S, C, P represent respectively the catalytic enzyme, its substrate, the
enzyme–substrate complex and the final product (i.e., the activated substrate). Apply-
ing the law of mass action and using the same symbols to denote the reactants and
their concentrations, this scheme can be translated into the following system of (dimen-
sional) differential equations:

d S

dt
= −k1(ET − C)S + k−1 C

dC

dt
= k1(ET − C)S − (k−1 + k2)C,

(2)

with initial conditions

S(0) = ST , C(0) = 0, (3)

and conservation laws

E + C = ET , S + C + P = ST . (4)

Introducing the total substrate S = S + C , we obtain

d S

dt
= −k2 C,

dC

dt
= k1

[
C2 − (ET + S + KM ) C + ET S

] (5)
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with initial conditions

S(0) = ST , C(0) = 0, (6)

and conservation laws

E + C = ET , S + P = ST . (7)

Nondimensionalizing these latter equations it is possible to find all the scaling
quantities and, more importantly, the slow time scale and the fast one (for the details see
[4]). We obtain therefore the inner differential equations for the inner nondimensional
variables s and c as:

ds

dτ
= −ε c

dc

dτ
= σ ηc2 − (η + κM ) c − σ s c + s

(8)

with initial conditions s(0) = 1 and c(0) = 0, where

σ = ST

KM + ET + ST
, η = ET

KM + ET + ST
, κM = KM

KM + ET + ST

and

ε = K ET

(KM + ET + ST )2 (9)

where K = k2
k1

is the Van Slyke–Cullen constant. Expanding the solutions of (8) in
the form

s = Σ0 + ε Σ1 + o(ε) , c = Γ0 + ε Γ1 + o(ε) .

it is easy to find (see again [4] for details) that

Σ0 = const = 1 (10)

Σ1 = 1

σ η
log

(
Γ +

0 exp(
√

1 − 4σ η τ) − Γ −
0

Γ +
0 − Γ −

0

)
− Γ +

0 τ ; (11)

Γ0(τ ) = exp(
√

1 − 4σ η τ) − 1

σ η [Γ +
0 exp(

√
1 − 4σ η τ) − Γ −

0 ] (12)

where

Γ ±
0 = 1 ± √

1 − 4 σ η

2 σ η
(13)
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and the corresponding Γ1, which has a more complicated formula. The same treatment
is to be used with the outer differential equations, for the outer nondimensional vari-
ables s and c, obtained choosing the fast timescale in such a way that the perturbative
parameter ε equals the ratio of the slow timescale over the fast one:

ds

dT
= −c

ε
dc

dT
= σ ηc2 − (η + κM ) c − σ s c + s

(14)

Setting

s = s0 + ε s1 + o(ε) , c = c0 + ε c1 + o(ε) .

we find

c0 = η + κM + σ s0 ± √
(η + κM + σ s0)2 − 4σ ηs0

2 ση
(15)

while s0 is given by

ds0

dT
= −c0 (16)

with the initial condition given by the matching condition s0(0) = lim
τ→∞Σ0(τ ) = 1.

From (14) it is found that the first correction terms in the outer solutions are given by

ds1

dT
= −c1 (17)

c1 = c′
0 + s1 (σ c0 − 1)

2 η σ c0 − σ s0 − η − κM
. (18)

In conclusion, we can write the (nondimensional) uniform expansions as

cun(τ ) = cun
0 (ετ ) + εcun

1 (τ ); sun(τ ) = sun
0 (ετ ) + εsun

1 (τ ) (19)

where, following [6], we obtain the uniform approximations adding the inner and outer
solutions and subtracting their common part, i.e.,

cun
0 (τ ) = c0(ετ ) + Γ0(τ ) − Γ −

0

sun
0 (τ ) = s0(ετ ) + Σ0(τ ) − 1 = Σ0(τ )

cun
1 (τ ) = c1(ετ ) + Γ1(τ ) − mτ − q

sun
1 (τ ) = s1(ετ ) + Σ1(τ ) − 1

ση
log

Γ +
0

Γ +
0 −Γ −

0
+ Γ −

0 τ

(20)
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where m and q are found using appropriate matching conditions (see [4] for
details).

3 A critical review of [9]

The main point of [9] deals with the second equation of (8). Substituting in it the
equality

σ η = ε
ST

K
(21)

Eq. (8) becomes

dc

dτ
= ε

ST

K
c2 − (η + κM ) c − σ s c + s (22)

Looking now for leading order solutions, the first term on the right hand side of (22)
disappears and therefore the leading order solutions are simpler than the ones obtained
in [4]. As a consequence, in [9] the author is able to find a nice, closed form of the first
order expansions of all variables. Neverthless this argument is, in general, not valid.
In fact, the introduction of (21) in (8) changes the inner nondimensionality of the
equation, because it reintroduces the dimensional quantity ST that, in general, may not
be of order unity. In the simulations shown in [9] (where, surprisingly, the comparison
is not with the numerical solution of the full system of differential equations but with
the first order expansions given in [4]) the “simplified” solutions are in good agreement
with the “not–simplified” ones, but this is only because in those simulations ST is of
order unity.

In fact, the situation changes dramatically if we set ST � 1 (see Figs. 1, 2), where
we have compared the (dimensional) first order expansion of C (the results for the

Fig. 1 Dynamics of C : full
system (solid), first order
expansion from [9] (dotted), first
order expansion from
[4](dashed). Kinetic parameters:
ET = 10, ST = 20,

k1 = 1, k−1 = 0.04, k2 = 4
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Fig. 2 Dynamics of C : full
system (solid), first order
expansion from [9] (dotted), first
order expansion from
[4](dashed). Kinetic parameters:
ET = 100, ST = 200,

k1 = 1, k−1 = 0.04, k2 = 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

time

C

variable S is analogous) given in [9] with the numerical solution of (2) and with the
first order expansion given in [4]. As expected, the expansions given in [9] are far
from being accurate, while ours are in good agreement with the numerical solution of
(2). This happens especially in Fig. 2, where the numerical solution and the expansion
given by [4] are almost undistinguishable, while the expansion given by [9] misses
largely its target.

4 Conclusions

Singular perturbation methods are powerful techniques that allow the reconstruction
of approximate solutions of differential equations with great accuracy. The procedure
to use such methods is in some way arbitrary, in the sense that it requires some
choices (and therefore some expertise), depending on the result that you are looking
for. Anyway, once you have chosen to follow a way, the “philosophy” of the choice
must be respected and preserved. In [9], after nondimensionalizing the differential
equations, it makes no sense to reintroduce dimensional quantities without a strong
justification such as, e.g., the discussion of a particular case.

In fact, the author could have discussed the case treated in [9] as an application of the
argument used in [4] to obtain better and simpler results, when the total substrate ST is
of order unity or, at least, when it is of the same order of the Van Slyke–Cullen constant
K = k2

k1
. However, it is not possible to generalize his results to all combinations of

kinetics parameters, as shown by our argument and simulations.
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